În Fizica elicoidală nu există altceva decât (o mulțime numărabilă de) centre de masă care se deplasează cu viteza luminii în vid.
Masa asociată acestor centre de masă este proporțională cu torsiunea totală. Torsiunea totală este o noțiune nouă pe care o vom defini aici.
Dacă traiectoria este o elice de curbură $\kappa$ și torsiune $\tau$, atunci torsiunea totală a acestei traiectorii este $\tau_2=\sqrt{\kappa^2+\tau^2}$.
Dacă traiectoria este o curbă de precesie constantă (elice în jurul altei elice sau, echivalent, elice de ordinul doi), atunci torsiunea totală este $\tau_3=\sqrt{\kappa_2^2+\tau_2^2}$, unde $\kappa_2=\frac{\kappa'\tau-\kappa\tau'}{\kappa^2+\tau^2}$, derivarea făcându-se în raport cu parametrul canonic. Cum centrul de masă se mișcă cu viteza luminii în vid, derivarea în raport cu parametrul canonic este echivalentă cu derivarea în raport cu timpul propriu al centrului de masă.
Observăm că curbura de ordinul doi definită mai sus poate fi scrisă mai simplu în funcție de parametrul $l=\frac{\kappa}{\tau}$, numit „lancretian”. În funcție de lancretian și derivata acestuia, curbura de ordinul doi poate fi scrisă ca $$\kappa_2=\frac{l'}{1+l^2}.$$
Prin recurență, se poate defini astfel torsiunea de ordin superior. Acest ordin crește atât timp cât lancretianul are derivata nenulă. În momentul în care un lancretian are derivata nulă, curbura de ordinul respectiv se anulează și ea, astfel încât nu mai contribuie la creșterea torsiunii. Prin urmare, torsiunea de orice ordin superior devine egală cu torsiunea maximă. Această torsiune maximă este torsiunea totală pe care am definit-o aici. Notăm această torsiune totală cu $\tau_{tot}$.
Astfel, masa centrului de masă care se deplasează pe o anumită traiectorie este dată de $m=\frac{\hbar}{c}\tau_{tot}$, unde constantele ce apar în formulă sunt cele binecunoscute (constanta lui Planck barată și viteza luminii în vid).
Niciun comentariu:
Trimiteți un comentariu
Comentariile vor fi moderate în măsura timpului meu disponibil, după care vor apărea pe blog. Voi încerca să public doar comentariile consistente sau interesante sau adevărate sau corecte sau la obiect. Voi căuta să le elimin pe cele din care nu avem nimic de învățat sau pe cele care afectează negativ mintea cititorului sau reclamele fără legătură cu blogul. De asemenea, voi face tot posibilul să răspund la comentariile care cer un răspuns. Vă mulţumesc pentru efortul vostru de a scrie în lumina acestor consideraţii!