Căutați ceva anume?

marți, 28 februarie 2023

Principiul măsurabilității

Principiul măsurabilității:

Dacă un observator $O_1$ poate măsura o mărime fizică și determină o valoare $v_1$ concretă a acestei mărimi, atunci orice observator $O_2$ din Univers va putea măsura acea mărime fizică și va determina tot o valoare concretă $v_2$. 


În baza principiului relativității, forma legilor naturii care leagă valoarea $v_1$ de valoarea $v_2$ nu depinde de starea de mișcare a observatorilor implicați.


Consecință:

Curbura și torsiunea traiectoriei unui corp, fiind și ele mărimi fizice, se supun principiului măsurabilității. Drept urmare, un corp nu poate ajunge în repaus (caz în care curbura traiectoriei nu mai poate fi măsurată) sau în mișcare rectilinie (caz în care torsiunea traiectoriei nu poate fi măsurată).


Prin urmare, trebuie să înlocuim noțiunile imposibile de „repaus” și „mișcare rectilinie” utilizate azi în Fizică, cu mișcarea elicoidală, mai generală, care le aproximează bine pe primele două. Mai exact, (mișcarea pe) o elice circulară de curbură foarte mică aproximează bine (mișcarea pe) o dreaptă (mișcarea rectilinie), iar (mișcarea pe) o elice circulară de curbură foarte mare aproximează bine punctul (repausul).


marți, 3 ianuarie 2023

Legea a treia a lui Kepler dedusă în Fizica elicoidală, fără a face apel la gravitație!


Legea a treia a lui Kepler ne spune că pătratul perioadei de revoluție a unei planete este proporțional cu cubul semiaxei mari a orbitei, adică $$\dfrac{T^2}{a^3}=constant.$$


Numai Newton a reușit să explice această lege, emițând ipoteza existenței unei forțe de atracție între planete și Soare care forță este invers proporțională cu pătratul distanței de la planetă la Soare.



Astăzi voi arăta că și Fizica elicoidală explică această lege, pe baza ipotezei că planetele se mișcă pe elice, adică pe curbe pentru care, așa cum a demonstrat în 1806 dragul matematician francez Michel Ange Lancret, raportul dintre curbură și torsiune este constant.


Fizica elicoidală admite (susține, postulează) că toate corpurile libere din Univers, deci și planetele, se mișcă pe elice, adică pe curbe care fac un unghi constant cu o dreaptă fixă.




De asemenea, în Fizica elicoidală, energia totală a unui corp este proporțională cu darbuzianul traiectoriei sale, adică $$E_{tot}=C\cdot d=C\cdot\sqrt{\kappa^2+\tau^2},$$ unde $C$ trebuie să fie o constantă universală.


Dacă în ultima relație torsiunea este nulă, rămâne energia datorată curburii traiectoriei, adică energia potențială, invers proporțională cu raza elicei $$E_p=C\cdot\kappa=\dfrac{C}{r}.$$


Iar dacă se anulează curbura în această relație, atunci rămâne energia datorată doar torsiunii, care este energia cinetică $$E_c=C\cdot|\tau|=\dfrac{1}{2}mv^2,$$

unde am folosit aproximația nerelativistă pentru expresia energiei cinetice, aproximație valabilă într-o primă etapă de studiu al planetelor.


Din aceste considerente rezultă că Fizica elicoidală mai spune (postulează) ceva echivalent și anume că în mișcarea planetelor raportul dintre energia potențială și energia cinetică este constant.


Dar constanța acestui raport este echivalentă cu legea a treia a lui Kepler! Pentru că din $$\dfrac{E_p}{E_c}=constant,$$

adică

$$\dfrac{\dfrac{C}{r}}{\dfrac{1}{2}mv^2}=\dfrac{2C}{m}\dfrac{1}{\omega^2 r^3}=\dfrac{C}{2\pi^2 m}\dfrac{T^2}{r^3}=constant,$$

ultima egalitate fiind echivalentă tocmai cu legea a treia a lui Kepler! Dumnezeule, ce concluzie! Ce Fizică bogată în consecințe! Fără să aducem în discuție gravitația, am reușit să explicăm cea de-a treia lege a lui Kepler!

duminică, 1 ianuarie 2023

Antimateria se mișcă pe elice cu torsiunea opusă celei pe care se mișcă materia

An nou minunat! Și la mulți ani!


Antimateria este un material microscopic. Ea este estompată de materie la nivel macroscopic. Mai precis, la nivel macroscopic, deosebirea dintre materie și antimaterie este insesizabilă. 


Aceasta deoarece materia este caracterizată de mișcare pe elice cu torsiunea negativă, iar antimateria este caracterizată de mișcare pe elice cu torsiunea pozitivă (și pentru fiecare dintre ele separat se aplică statistica Fermi-Dirac, iar pentru sisteme amestecate și puțin numeroase se aplică statistica Bose-Einstein). Atunci când sunt foarte multe particule de materie și antimaterie bine amestecate, torsiunea medie este nulă (caz în care se aplică statistica Maxwell-Boltzmann).

miercuri, 28 decembrie 2022

Trebuie să existe transformări care invariază constanta Planck

 
Am demonstrat deja că repausul și mișcarea rectilinie sunt imposibile, deoarece ar implica existența unor observatori privilegiați în Univers, care n-ar mai putea măsura curbura și, respectiv, torsiunea traiectoriilor.

Imposibilitatea repausului implică existența unei viteze liniare universale (viteza luminii). Imposibilitatea mișcării rectilinii implică existența unei viteze de rotație universale (legată de constanta Planck).

Dacă pentru viteza liniară există transformările Lorentz, transformări care invariază viteza luminii, tot astfel și pentru viteza de rotație trebuie să existe transformări care invariază constanta Planck.

Postări populare

Arhivă blog

Etichete

Persoane interesate