Căutați ceva anume?

miercuri, 14 septembrie 2016

Clasificarea curbelor

În contextul articolului precedent, un utilizator simpatic de pe forumul pentru cercetare (virgil_48) mi-a pus o problemă interesantă (și justificată și mult așteptată) privind deosebirea dintre o curbă simplă și una complicată. Îi voi răspunde acum mai riguros aici.

Există un parametru fundamental care face distincția dintre o curbă simplă și una complicată: lancretianul. Lancretianul unei curbe este raportul (deci fracția) dintre curbura curbei și torsiunea curbei. Bineînțeles, așa cum curbura curbei și torsiunea curbei depind de locul de pe curbă în care le măsurăm, la fel și lancretianul este o funcție de locul de pe curbă în care îl măsurăm. 

Cu lancretianul în minte putem să vorbim despre clasificarea curbelor. 

  1. Cea mai simplă curbă este curba al cărei lancretian este constant (mai simplu decât constant nu se poate). Numim această curbă așa cum este numită ea și astăzi: elice propriu-zisă (noi i-am mai putea spune „elice de ordinul întâi”). Elicea are proprietatea remarcabilă că „se rotește” în jurul unei drepte.
  2. Următoarea curbă, puțin mai complicată decât elicea, dar cea mai simplă curbă după elice este curba al cărei lancretian nu mai este constant, ci este variabil, dar variația lui este constantă. Mai exact derivata de ordinul întâi a lancretianului este constantă. Am putea să mai spunem că în acest caz „viteza lancretianului” este constantă. Cum să numim această curbă? Eu am ales denumirea de „elice de ordinul al doilea” sau „elice de ordinul doi”. În studiile curente, elicea de ordinul doi se mai numește și „curbă de precesie constantă” deoarece curba „precesează” în jurul unei drepte.
  3. Următoarea curbă, puțin mai complicată decât elicea de ordinul doi, dar cea mai simplă curbă după această elice de ordinul doi este curba al cărei lancretian nu mai are „viteza” constantă, dar are „accelerația” constantă. Mai exact, lancretianul acestei curbe are derivata de ordinul doi constantă. Desigur, numesc această curbă „elice de ordinul trei”. Ea ar mai putea fi numită și „curbă de nutație constantă”, deoarece curba „nutează” în jurul unei drepte.
  4. Și așa mai departe...
Așadar, sper că acest articol face o idee despre complexitatea curbelor. Teorema de recurență a formulelor lui Frenet ne demonstrează că orice curbă, oricât de complicată ar părea ea, nu este altceva decât o elice de un anumit ordin. Cu cât este mai mare acest ordin, cu atât este mai complicată curba.

Postări populare

A apărut o eroare în acest obiect gadget

Arhivă blog

Etichete

Persoane interesate