Căutați ceva anume?

vineri, 13 noiembrie 2015

Fizica elicoidală este precum geometriile neeuclidiene

Geometria neeuclidiană diferă de geometria euclidiană printr-un singur postulat: postulatul paralelelor. Mai exact, în timp ce geometria euclidiană spune că „printr-un punct exterior unei drepte putem duce o singură paralelă la acea dreaptă”, geometriile neeuclidiene neagă această propoziție. Și fiecare negație posibilă duce la o geometrie nouă posibilă: dacă admitem că printr-un punct exterior unei drepte nu putem duce nici o dreaptă paralelă la acea dreaptă, obținem geometria eliptică, iar dacă admitem că prin acel punct putem duce mai multe (o infinitate de) drepte paralele cu dreapta dată, obținem geometria hiperbolică. Dar cel mai important este că (prin anularea unui parametru) din geometriile neeuclidiene REZULTĂ geometria euclidiană, dar nu și invers!

Tot astfel, în Fizica elicoidală, postulatul care face diferența este postulatul inerției. Fizica actuală spune că un corp liber se deplasează pe o linie dreaptă, pe când Fizica elicoidală neagă această propoziție. Negația acestei propoziții duce spre o curbă care, spre deosebire de dreaptă, are curbură și torsiune nenule (și constante într-un mediu uniform). Așadar, negația ne duce spre elicea circulară. Apoi, dacă anulăm curbura acestei elice din Fizica elicoidală, obținem Fizica actuală.

Postări populare

A apărut o eroare în acest obiect gadget

Arhivă blog

Etichete

Persoane interesate