Căutați ceva anume?

vineri, 16 octombrie 2015

Viteză medie și lancretian mediu

Un corp care se deplasează pe o elice are viteza medie mai mică decât viteza cu care se deplasează el efectiv pe elice. Pentru că degeaba are el sute de kilometri pe oră de-a lungul elicei, din moment ce elicea are spire multe și corpul aproape că nu înaintează deloc.

Avem o formulă pentru viteza medie, în funcție de parametrii elicei. Dacă elicea are curbura $\kappa$ și torsiunea $\tau$, iar corpul se deplasează de-a lungul elicei cu viteza $c$, atunci viteza medie pe care o are corpul este 
$$v=\frac{c}{\sqrt{1+l^2}}.$$

Am notat cu $l=\frac{\kappa}{\tau}$ raportul dintre curbură și torsiune, adică „lancretianul” elicei.


Dacă un corp se deplasează cu viteza $c$ pe o traiectorie mult mai întortocheată decât elicea și are viteza medie $v$, atunci putem vorbi de un lancretian mediu, care rezultă din aplicarea formulei de mai sus. Adică, avem
$$l=\sqrt{\frac{c^2}{v^2}-1}.$$ 

Postări populare

A apărut o eroare în acest obiect gadget

Arhivă blog

Etichete

Persoane interesate